
win2c64 manual (version 2.0)

Aart J.C. Bik (http://www.aartbik.com/)

1 Assembler Usage

This document describes the cross-assembler win2c64 for the 65xx microproces-
sor family that runs on any Microsoft Windows1 platform and generates code
that can be executed on the Commodore 64 or other 65xx-based microcomputer.
The assembler is invoked on a source file file.s as follows

win2c64 [options] file.s

where [options] denotes an optional list of the following flags.

Meaning

-a enable assembler (default)
-d enable disassembler
-e envelop segments
-h show help
-o show opcode table
-s enable silent assembly
-u enable undocumented opcodes
-x show symbol table

Meaning

-c use C64S tape image (the default)
-p use paper tape format (binary)
-P use paper tape format (text)
-r use raw bytes format (with header)
-R use raw bytes format (without header)
-6 use H6X format (text)

If no errors occur in the source file, this command generates, by default, the
target file file.t64 in C64S tape image format [Pet]. All assembler messages
are sent to stderr. If no source file is indicated, the assembler reads from stdin
and writes to stdout to enable the use of win2c64 in pipes and redirections.

2 Lexical and Syntactic Conventions

Valid assembler input consists of mnemonics (e.g. lda, inx, and rts), the
directives .org, .equ or =, .byte, .word, .ds, .align, and .include, the
operators and symbols (,), +, -, >, <, @, #, x, y, and ,, literal constants in
decimal (e.g. 15), hexadecimal (e.g. $0f), or binary (e.g. %00001111), strings
of characters enclosed between doubles or single quotes (e.g. "A STRING" or
’SINGLE’), labels consisting of one letter followed by zero or more letters, digits,
or underscores (e.g. label and x 2 but not any of the reserved keywords), and
the two symbols ; and ! to start a comment.

1The assembler is also available as lin2c64 for Linux or mac2c64 for MacOS.

1

Whitespace (spaces and tabs) separates tokens where required, for instance,
in between a label and a mnemonic, but is otherwise ignored. A newline termi-
nates each input line. When the assembler encounters the character ; or !, the
rest of the input line is ignored as a comment. Each input line should either be
empty (including comments), or otherwise define either one machine instruction
or directive using the following format, where [..] denotes optional fields.

[label] mnemonic/directive [operand(s)] [comment]

The assembler is case-insensitive, except within literal strings. This implies
that, for instance, label, lAbel and Label all denote the same label. Likewise,
LDA, Lda, and lda are all interpreted as the mnemonic for loading the accu-
mulator. The two strings "hello" and "HELLO", however, are different. All
mnemonics and the operands x and y are reserved keywords, which implies that
they cannot be used as labels. The following input line, for example, causes an
assembler error due to the invalid attempt to use the mnemonic nop as a label.

nop jsr chrout ; print character

3 Machine Instructions

The assembler supports all MOS Technology 6510 machine instructions defined
by combining any of the following mnemonics with the appropriate addressing
formats.

adc and asl bcc bcs beq bit bmi bne bpl brk bvc bvs clc cld cli
clv cmp cpx cpy dec dex dey eor inc inx iny jmp jsr lda ldx ldy
lsr nop ora pha php pla plp rol ror rti rts sbc sec sed sei sta
stx sty tax tay tsx txa txs tya

By default, only the mnemonics shown above are recognized as valid op-
codes. Under option -u, however, the assembler also recognizes the following
undocumented opcodes, following the naming conventions defined in [Var96].

alr anc arr aso axa axs dcm hlt ins las lax lse
oal rla rra sax say skb skw tas xaa xas

The 6510 supports the following addressing formats.

Addressing Format Example

implied dex

immediate lda #$ff

zero page lda $10

zero page,x lda $10,x

zero page,y ldx $10,y

absolute lda $c000

Addressing Format Example

absolute,x lda $c000,x

absolute,y lda $c000,y

(indirect,x) lda ($10,x)

(indirect),y lda ($10),y

indirect jmp ($c000)

relative bne label

An error is generated when the instruction defined by the mnemonic does
not support the associated addressing format. Please refer to [Com82, Smi84]
for a detailed overview of all 6510 machine instructions.

2

4 Directives

The assembler supports several directives. The originate directive takes the
following format

[label] .org address [comment]

and defines that all following instructions and data must be placed starting at
the defined memory address, which must be in the range $0000 to $ffff. The
optional label is associated with the given memory address. This directive does
not place anything in memory yet. Several originate directives may be used to
break a program into non-overlapping segments.

The equate directive takes the format

label .equ value [comment]

and associates the label with the defined value, which much be in the range
$0000 to $ffff. Alternatively, symbol = may be used for .equ. The directive
records the association between label and value in the symbol table for later use,
but otherwise does not place anything in memory yet. Values are recorded as 2-
byte constants in the symbol table, but can still be used as 1-byte operands. The
assembler verifies whether all uses can be appropriately encoded. An example
is shown below.

chrout .equ $ffd2
one .equ $0001

. . .
jsr chrout ; use of a 2-byte value
lda #one ; use of a 1-byte value

In contrast, both load instructions below are invalid, because a 2-byte value
cannot be encoded as an immediate operand.

twobyte .equ $ffff
lda #twobyte ; invalid (.equ immediate)
lda #$ffff ; invalid (direct immediate)

Since the assembler handles all data as unsigned numbers, a 1-byte represen-
tation of −1 in two’s complement should simply be stored as $ff in the symbol
table, to ensure that subsequent immediate encodings proceed properly.

The byte directive takes the format

[label] .byte values [comment]

and places all following values in memory starting from the current memory
address, which is associated with the optional label. The list of values can
consist of any sequence of one or more whitespace- or comma-separated 1-byte
literal constants, strings, and expressions that evaluate to 1-byte values. The
.word directive works similarly for 2-byte constants and expressions, which will
be stored in low-byte high-byte order. An example follows.

3

data .byte "A STRING" $00 %0011 32 ; start of data
.byte >data <data ; high-byte and low-byte

; of label data itself
.byte "squote=’" ; use dquotes around squotes
.byte ’dquote="’ ; and v.v.
.word $abcd ; stored as $cd $ab

The byte directive is typically used to reserve memory for actual data, such
as text output or bitmaps for screen dumps and sprites. The directive can also
define executable code by placing an instruction encoding directly in memory,
as illustrated below.

code ldx #$01 ; assembler-encoded instruction falls through
data .byte $ea ; into user-encoded instruction of nop

nop ; execution continues here

The byte directive is also useful to obtain encodings that are not directly
supported by the assembler. An example that encodes a BASIC line before the
actual machine code is shown below.

.org $0801 ; start at BASIC

.byte $0c $08 $0a $00 $9e $20 $32 ; encode SYS 2064

.byte $30 $36 $34 $00 $00 $00 $00 $00 ; as BASIC line
lab2064 jmp main

...
main . . . ; start code here

After loading the resulting program, simply typing ‘RUN’ (rather that using
an explicit ‘SYS’ to a memory address) starts executing from label main. Such
a ”runnable” program is a more user-friendly way of distributing machine code,
since users do not have to know at what memory address execution should start.

The define storage directive has the form

[label] .ds size [comment]

and defines storage for the specified number of bytes. The memory is initialized
to all zeros. This directive is commonly used to set aside storage for larger
data structures. Obviously, control flow should not fall or jump into the reseved
region. For example, the following example reserves 20 bytes of storage.

storage .ds 16

The alignment directive takes the format

[label] .align value [comment]

4

to obtain the indicated memory alignment, provided that the operand evaluates
to any of the powers of two 1, 2, 4, . . . , 256, 512, 1024. If required, the assembler
pads memory with the 1-byte nop instruction to enforce the alignment, so that
the directive can be used to enforce alignment on instruction sequences or data
alike. The optional label is associated with the first memory address where
this padding starts which, obviously, is not necessarily the same as the actually
aligned memory address that follows. Below, an example that enforces a 64-byte
alignment on the start of a loop is shown. Here, if the memory address of pad
is not 64-byte aligned, the required number of nop instructions is inserted to
force this memory alignment on loop.

pad .align 64 ;
loop . . . ;

cpx #10 ;
bne loop ; loop back

Finally, the include directive takes the format

.include "file.s"

to denote that the contents of file.s should be included and assembled at the
place at which this directive occurs. Include files may be nested (up to 16 files
deep). The include directive is useful to ‘import’ commonly used labels (such
as symbolic names for all the VIC or SID chip registers) or routines. Make sure
that included labels do not conflict with labels in the main file or other included
files, because otherwise a redefined error occurs.

5 Labels

Labels that are used in directives should have prior definitions. So, in the
example below, all but the definition of clow are valid.

address .equ $c020 ; valid
alow .equ <address ; valid, alow = $20
ahig .equ >address ; valid, ahig = $c0

.org address ; valid
clow .equ <chrout ; invalid, use before def
chrout .equ $ffd2 ; valid

The assembler provides a rather flexible way of defining and using labels in
instructions, however. Instructions can simply refer to any label in the program,
provided that eventually every used label is actually defined. So, the following
example is valid.

bne exit ;
jsr chrout ;

exit rts ; label exit defined
chrout .equ $ffd2 ; label chrout defined

5

When given a choice between a 1-byte or 2-byte encoding (like absolute vs.
zero page addressing), the assembler uses the smallest possible encoding when
the label is already defined, or otherwise assumes the largest possible encoding
which is filled in with ‘back patching’ later.

Assembly programs often have a lot of tight loops, for example, to intro-
duce small delays. Since each label in the program must be unique, providing
meaningful names to all labels required to implement such loops may be hard.

loop1 dex ; <--+
bne loop1 ; ---+
...

loop2 dex ; <--+
bne loop2 ; ---+

In such cases, the anonymous backward label defined as may be helpful.
Unlike other labels, this label may occur many times and branches always jump
back to the most recent definition of the label (references prior to the first def-
inition jump forward). The example above can be also implemented as follows,
avoiding the need for label names such as loop1 and loop2.

_ dex ; <--+
bne _ ; ---+
...

_ dex ; <--+
bne _ ; ---+

To support a commonly used coding style, a single label on an otherwise
empty input line (including comments) is associated with the current memory
address (viz. where subsequent instructions or data would be placed). A valid
example follows, where label loop is associated with the jsr instruction.

ldx #99
loop

jsr routine
dex
bne loop ; loop back

Also, to support other assembler formats, an optional : may appear after a
label definition, as shown below.

bne skip
inx

skip: rts

6

6 Operators

The high-byte operator > and low-byte operator < yield, respectively, the most
and least significant byte of its operand. For example, >$abcd yields $ab and
<$abcd yields $cd. More general, operator @ followed by one of the hexadecimal
digits 0 through f extracts the byte that starts at the specified bit 0 through
15, viz. d@operand is computed as the following logical shift right (zeros in)
followed by masking the value to a byte: (operand >> d) & $ff.

For example, @4$abcd yields $bc and @c$abcd yield $0a, while the operators
@8 and @0 are identical to the high-byte and low-byte operator, respectively.
This generalization allows for various memory address manipulations.

The operators + and - simplify offset computations, as illustrated in the
following example of self-modifying code which, each time the subroutine is
called, prints a subsequent character.

selfmod lda #"A" ; load character
jsr $ffd2 ; print character
inc selfmod+1 ; change immediate of lda
rts ;

Adding the constant one to the label selfmod yields the address of the
immediate field in the load instruction, which would be much harder to access
without using a + operator. Labels that are used in such computations can
still be involved in ‘back patching’, as long as at least one operand of each +
operator and the right-hand operand of each - evaluates to a constant. An
example that illustrates the flexibility of this approach is shown below, where
various manipulations of a yet-to-be-defined label are allowed.

val1 .equ $01ff ;
val2 .equ $ff02 ;

ldx #<later ; becomes $cd
ldy #>later ; becomes $ab
lda #@clater + >val1 + <val2 ; becomes $0d
inc later - 1 ; becomes $abcc

later .equ $abcd ; ($0a+$01+$02)

7 Memory Model

The assembler supports a simple segmented memory model. By default, instruc-
tions and data are placed in the segment that starts at memory address $c000
and up. The originate directive can be used to define an alternative segment,
or even to break a program into several segments. The assembler reports an
error if the placement of instructions or data exceeds memory address $ffff,
or if the different segments overlap.

7

To start executing a program, use ‘SYS’ to the memory address of the seg-
ment that begins with the main entry. Otherwise, query the symbol table with
option -x to find the memory address where program execution should start.
An example of a single segment program that places data before the main in-
structions but always starts as ‘SYS 2048’ is shown below.

initial .org $0800 ;
ijump jmp main ;
data .byte "..." ; place data here

.byte "..." ;
main . . . ; start code here

Due to the semantics of the originate directive, both the labels initial and
ijump are associated with memory address $0800 in this example.

An example of a two segment program is shown below. The example also
illustrates using operator @ for a memory address manipulation that determines
in which 64-byte chunk of a 16K bank of memory the bitmap of a sprite resides.

.org 832 ;
bitmap .byte %00000011 %11111111 %00000000 ; sprite bitmap

.byte %11111111 %11111111 %11111111 ;
...

...
.byte %11111111 %11111111 %11111111 ;
.byte %00001111 %11111111 %11110000 ;
.org $c000 ;

main lda #@6 bitmap ; set sprite pointer
sta $07f7 ; to 64-byte bitmap
. . . ; rest of program

Multiple segments can be combined into one enveloping segment using the
option -e. This feature may be useful for emulators that do not easily combine
multiple files into memory, at the expense of storing additional bytes in between
the different segments (all set to zero).

8 Assembler File Formats

The assembler converts the user readable source file file.s into the raw bytes
encoding of the corresponding 65xx machine instructions and data which are,
by default, stored as target file file.t64 in C64S tape image format supported
by Commodore 64 emulators like C64S [Pet], CCS64 [Sun], and WinVice [VIC].
The generated file defines a directory with one entry per segment that loads
into the appropriate memory address.

Under option -r, the assembler writes each segment in raw bytes format,
with two header bytes defining the initial segment address. The target file is
file.rw for one segment, or file.rwa, file.rwb, etc. for multiple segments

8

(this feature is less useful in pipes or redirections, since the segment encodings
appear concatenated at the output). Option -R works similar, but omits the
header bytes.

Alternatively, option -6 generates all segments in a single target file file.h6x
in H6X format, which is a simple but versatile ASCII encoding of 65xx code
understood by the Soft6502 emulator [Cha].

Option -p yields a single target file file.ptf in binary MOS Technology
paper tape format, which is a representation of 65xx code used by, for example,
the KIM-1 microcomputer and, more recently, the Micro-KIM available at Briel
Computers [Bri]. Option -P works similar, but emits the paper tape format in
a text representation that is more suitable for a terminal interface.

With some effort, any of these file formats can be uploaded to a real Com-
modore 64 or other 65xx-based microcomputer for execution.

9 Assembler Example

The following ‘Hello World’ program provides sample input for win2c64.

chrout .equ $ffd2 ; kernal address
main .org $c000 ; start at free RAM

ldx #0
loop lda text,x

jsr chrout
inx
cpx #11
bne loop
rts

text .byte "HELLO WORLD"

The output of applying the assembler to this file is shown below.

=> win2c64 -x hello.s

**** MOS Technology 6510 Assembler
**** for the Commodore 64 (v2.0.4)
**** (C) 2005-2011 Aart J.C. Bik

segment 0 [$c000:$c019) #bytes : 25
output C64S tape image

------------ SYMBOL TABLE ------------
chrout :: $ffd2
loop :: $c002
main :: $c000
text :: $c00e

9

10 Disassembler Example

For convenience, win2c64 also has a built-in disassembler that operates on the
formats discussed in the previous section. Option -d enables the disassembler.
If the input file defines more than one segment, the disassembler shows all
instructions for the smallest enveloping segment, with zeros (brk instructions)
padded in between.

For example, suppose file small.ptf contains the following text representa-
tion of a small assembly program in paper tape format.

;060200A264CAD0FD0003A5
;0000010001

The option combination -dP activates the disassembler on paper tape format
represented as text, as shown below.

=> win2c64 -dP small.ptf

**** MOS Technology 6510 Assembler
**** for the Commodore 64 (v2.0.4)
**** (C) 2005-2011 Aart J.C. Bik

disassembling paper tape format (text)

$0200 a2 64 ldx #$64
$0202 ca dex
$0203 d0 fd bne $0202
$0205 00 brk

10

References

[Bri] Briel Computers. Micro-KIM. http://www.brielcomputers.com/.

[Cha] Charles Bond. Soft6502. http://www.crbond.com/soft6502.htm.

[Com82] Commodore Business Machines, Inc. Commodore 64 Programmer’s
Reference Guide, 1982.

[Pet] Miha Peternel. C64S Commodore 64 Emulator for PC.
http://www.phs-edv.de/c64s/index.htm.

[Smi84] Bruce Smith. Commodore 64 Assembly Language. Shiva Publishing,
1984.

[Sun] Per H̊akan Sundell. CCS64 Commodore 64 Emulator.
http://www.ccs64.com/.

[Var96] Adam Vardy. Extra Instructions Of The 65XX Series CPU, 1996.

[VIC] VICE Team. WinVICE Emulator. http://www.viceteam.org/.

11

